利用动态规划方法求解每对结点之间的最短路径问题(all pairs shortest path problem)时,设有向图G=<V,E>共有n个结点,结点编号1~n,设C是G的成本邻接矩阵,用Dk(i,j)即为图G 中结点i到j并且不经过编号比k还大的结点的最短路径的长度(Dn(i,j)即为图G中结点i到j的最短路径长度),则求解该问题的递推关系式为( )。
A、Dk(i,j)=Dk-1(i,j)+C(i,j)
B、Dk(i,j)=min{Dk-1(i,j),Dk-1(i,j)+C(i,j)}
C、Dk (i,j)=Dk-1(i,k)+Dk-1(k,j)
D、Dk(i,j)=min{Dk-1(i,j),Dk-1(i,k)+Dk-1(k,j)}
温馨提示:因考试政策、内容不断变化与调整,信管网提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
相关推荐
2015/01/20
2015/01/20
2015/01/20
2015/01/20
2015/01/20